Effect of fluorochromes on bacterial surface properties and interaction with granular media.

نویسندگان

  • J Chen
  • B Koopman
چکیده

Simple, efficient, and safe tagging methods are desired in short-term microbial transport studies such as in the study of filtration systems for water and wastewater treatment. Suitability of selected fluorochromes as bacterial tagging agents in transport studies was evaluated on the basis of stability of stained cells and the effect of staining on bacterial surface characteristics and interaction with granular media. Surface properties were characterized by zeta potential and microbial adhesion to hydrocarbons. The effect of staining on interactions between bacteria and porous media was evaluated in terms of removal of bacteria in batch adsorption tests using sand coated with aluminum hydroxide to enhance adsorption. The DNA-specific fluorochrome 4',6-diamidino-2-phenylindole (DAPI) had generally negligible effects on bacterial surface properties and interaction with sand, as indicated in batch adsorption tests using pure cultures (Escherichia coli or Acinetobacter sp.) and wastewater bacteria. Cells stained with DAPI were stable for 48 h at 4 or 20 degrees C. Other nucleic acid fluorochromes tested had different but significant effects on bacterial cells and produced less stable fluorescence. Since transport through porous media is modulated by surface properties, it may be concluded based on these results that the choice of fluorochromes is critical in microbial transport studies. DAPI appeared to be a promising tagging agent. Time dependence of fluorescence of stained cells may limit the use of fluorochrome-tagged cells in long-term transport studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SEISMIC BEHAVIOR OF SILOS WITH DIFFERENT HEIGHT TO DIAMETER RATIOS CONSIDERING GRANULAR MATERIAL-STRUCTURE INTERACTION

Silos are structures that are used for storing different types of granular material. Dynamic behavior of silos under seismic loads is very complex. In this paper seismic behavior of steel silos with different height to diameter ratios is investigated by considering granular material-structure interaction using ABAQUS finite element package. Silo wall is modeled by shell elements and its behavio...

متن کامل

Liquid Effluent Discharge and Control Management of Surrounding Soil

The effluent generated from a thermal power plant waste is a mixture of several chemicals and to identify the effect of these chemicals on soil, a case study on naturally contaminated sites at Al-Musayyib region, Hilla city in Iraq has been carried out. Soil and water samples were collected from the sites and analyzed to identify the pollutants and their effect on soil characteristics. Laborato...

متن کامل

Liquid Effluent Discharge and Control Management of Surrounding Soil

The effluent generated from a thermal power plant waste is a mixture of several chemicals and to identify the effect of these chemicals on soil, a case study on naturally contaminated sites at Al-Musayyib region, Hilla city in Iraq has been carried out. Soil and water samples were collected from the sites and analyzed to identify the pollutants and their effect on soil characteristics. Laborato...

متن کامل

Wet granular materials

Most studies on granular physics have focused on dry granular media, with no liquids between the grains. However, in geology and many real world applications (e.g., food processing, pharmaceuticals, ceramics, civil engineering, constructions, and many industrial applications), liquid is present between the grains. This produces inter-grain cohesion and drastically modifies the mechanical proper...

متن کامل

The Effect of Magnetic Fe3O4 Nanoparticles on the Growth of Genetically Manipulated Bacterium, Pseudomonas aeruginosa (PTSOX4)

Background: Magnetite (Fe3O4) nanoparticles are currently one of the important and acceptable magnetic nanoparticles for biomedical applications. To use magnetite nanoparticles for bacteria cell separation, the surface of nanoparticles would be modified for immobilizing of nanoparticles on the surface of bacteria. Functionalization of magnetite nanoparticles is performed by different s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 63 10  شماره 

صفحات  -

تاریخ انتشار 1997